	受入テーマ		微細藻類のマイクロロボットとしての利用					
	受入系	機械工学系						
	受入区分	本科生: I						
	内 容	マイクロロボットは、ドラッグデリバリ、信号制御、超並列計算への活用が期待される。本研究室では、微生物をロボットとして捉え、知能と運動を取り入れた自律的なマイクロ知能システムの開発を目指している。特に本実習では、環境に応答する微生物として、走光性藻類のミドリムシを利用する。確率的に動作するミドリムシの集団に対し、光照射で運動を制御し、集団から駆動力を取り出す方法を理解する。実習内容をまとめ、研究室内で発表する。 1日目: (午後) オリエンテーション、マイクロ流体デバイス作製と観察2日目: 光パターンの生成と MEMS ミラーを用いた投影、ミドリムシの走光性を用いた運動制御3日目: 流体デバイス内でのミドリムシの走光性を用いた運動制御4日目: データまとめ、発表資料作成5日目: (午前) 研究室内での発表						
A1011	受入条件	微生物を取り入れたマイクロ機械に興味のある学生, 意欲のある学生を望む.						
	受入期間		募集定員	担当教員	E-mail アドレス			
	I 8/23(月)∼8/27(金)		3名	准教授 永井 萌土 教 授 柴田 隆行	nagai <at>me.tut.ac.jp shibata<at>me.tut.ac.jp</at></at>			
	事前課題		ロボットの応用例を考え,A4 1~2 枚程度のレポートにまとめ,電子データ <at>me. tut. ac. jp 宛に提出して下さい。提出期限は実習開始時です。</at>					
	服装	一般実験室で	での作業用の服	装・履物を準備すること。無	塵服は本学で準備する。			
	携行品	特になし						
	実習場所	E1 棟 102 室	(実験) , D1 t	東203室(居室)				
	最終日の終了時刻	11:00 応相診	ξ					
	備考	特になし						
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり				

	受入テーマ	自作のマイクロ流路チップで新型コロナを診断してみよう!						
	受入系	機械工学系						
	受入区分	本科生: I						
	内 容	手のひらサイズのマイクロ流路チップを用いて、新型コロナウイルス(COVID-19) 含むヒト感染症ウイルス(インフルエンザ A 型・B 型、SARS など)の遺伝子診断を行うテーマに取り組む。実習内容は、①マイクロ流路チップの作製方法の習得、②数付解析手法(汎用有限要素法ソフトウエア COMSOL)を用いたマイクロ流路内での物理現象(流れ)の可視化(数値シミュレーション)、③作製したデバイスの基本性能実験的評価(ヒト感染症ウイルスの多項目診断)などを体験的に学ぶ。最終日には、④実習内容をまとめて研究室内で発表する。		ARS など)の遺伝子診断を行 プの作製方法の習得、②数値 たマイクロ流路内での物理 製したデバイスの基本性能の				
	受入条件	微細加工やバイオ分野に興味のある学生、意欲のある学生を望む。						
	受入期間	j	E-mail アドレス					
A1021	I 8/23(月)~	8/27(金)	3名	教 授 柴田 隆行 准教授 永井 萌土	shibata <at>me.tut.ac.jp nagai<at>me.tut.ac.jp</at></at>			
	事前課題	提出してくた ①医療・医薬 ップ、マイク 呼ばれる研究 への応用例か ②シリコーン	ごさい(提出先 受分野へ応用さ ロタス(Micr ご分野)の概要 で望ましい。 ・樹脂(PDMS:	用紙2枚程度にまとめて、実習開始時までに電子データで 先:shibata(at)me.tut.ac.jp(柴田))。 される「マイクロ流体デバイス」(または、マイクロ流路チ croTAS)、ラボ・オン・チップ(Lab-on-a-chip)などとも 要について調査する。特に、実習テーマに関わる遺伝子診断 :ポリジメチルシロキサン)製のマイクロ流路チップを作製 グラフィ法」について調査する。				
	服装	一般実験室で	での作業用の服	装・履物を準備すること。無	塵服は本学で準備する。			
	携行品	特になし						
	実習場所	エレクトロニクス先端融合研究所、低層棟 E1-102、D1 棟 203 室(居室)						
	最終日の終了時刻	11:00 応相談						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		非平衡プロセスによる Ti-Mg 合金の創製					
	受入系	機械工学系						
	受入区分 本科生:Ⅱ							
	内 容	チタン (Ti) とマグネシウム (Mg) は互いに殆ど固溶せず、化合物も形成した、Mg の沸点が Ti の融点よりも低いことから、一般的な合金作製法であるは、Ti-Mg 合金の創製は困難である。本研究室実習では、巨大ひずみ加工法カニカルボールミリングや高圧ねじり加工を用いて溶解すること無く機械的合金を作製する事に成功した。本実習では、巨大ひずみ加工により、種々の金を作製するとともに、その特性の調査を行う。						
	受入条件	金属材料学の)基礎を有して	いること。意欲がある学生を	望む。			
	受入期間		募集定員	担当教員	E-mail アドレス			
A1031	Ⅱ 8/23(月)~	~9/3(金)	2名	助教 足立望教授 戸髙義一	n-adachi <at>me. tut. ac. jp todaka<at>me. tut. ac. jp</at></at>			
	事前課題	下記について調査し、A4 用紙2枚程度にまとめて、実習開始時に提出して下さい。 (1) Fe-C2元系平衡状態図を図示し、純鉄(Fe-0%C)、亜共析、共析、過共析それぞれの組成において得られる標準組織を示せ。Fe-C系において観察される代表的な相(フェライト、オーステナイト、セメンタイト、パーライト)の特徴・物性を調査せよ。(2) 金属を溶融させる事無く、機械的に混合させることで、状態図上には無い化合物や合金を創製する手法として、メカニカルミリング法やメカニカルアロイング法がある。これらの原理や適用事例等について調査せよ。						
	服装	作業ができる	5服装・履物を	準備すること				
	携行品	特になし						
	実習場所	D1-401-3						
	最終日の終了時刻	午前中に報告会を行ない、報告会終了後に解散する。						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		巨大ひずみ加工による高強度ナノ組織化金属の開発					
	受入系	機械工学系						
	受入区分	本科生:IV						
	内 容	近年、組織微細化による材料開発が盛んに行なわれているが、その中でも形状不変加工である高圧下ねじり(HPT, high-pressure torsion)加工による研究開発が注目されている。本実習では、HPT 加工により種々の金属(Fe, Al, Ti 系合金、金属ガラスなど)に巨大ひずみ加工を施し、ナノ組織化材料の創製を行なう。また、その組織・特性を調査し、巨大ひずみ加工によるナノ組織化のメカニズム、およびナノ組織化金属のもつ優れた特性を理解する。		加工による研究開発が注目さ ,Al,Ti 系合金,金属ガラス やででなる。また、その組織・				
	受入条件	金属材料学の	基礎を有して	いること。意欲がある学生を	と望む。 			
	受入期間		募集定員	E-mail アドレス				
A1041	IV 8/30(月)~	9/10(金)	2名	助教 足立望教授 戸髙義一	n-adachi <at>me. tut. ac. jp todaka<at>me. tut. ac. jp</at></at>			
	事前課題	下記について調査し、A4 用紙 2 枚程度にまとめて、実習開始時に提出して下さい。 (1) 金属を塑性変形すると転位が増殖し、転位強化により加工硬化する。「Bailey-Hirsch の関係」を調査するとともに、転位が増殖すると強度が増加する理由について調査せよ。(2) 大きな塑性変形によって、結晶粒は微細化し、結晶粒微細化強化により強度は増加する。「Hall-Petch の関係」は、結晶粒径と強度の関係を表わすことで知られている。「Hall-Petch の関係」を調査するとともに、結晶粒が微細化すると強度が増加する理由について調査せよ。						
	服装	作業ができる	5服装・履物を	準備すること				
	携行品	特になし						
	実習場所	D1-401-3						
	最終日の終了時刻	午前中に報告会を行ない、報告会終了後に解散する。						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		ナノ組織化金属の摩擦摩耗特性評価					
	受入系	系 機械工学系						
	受入区分			本科生: VI				
	内 容	摩擦係数は、摺動を伴う部材の寿命に直結するパラメータであることからは工学的に重要である。摩擦係数は、通常潤滑油に添加剤を加えることでる。近年、本研究室では金属材料に高密度な格子欠陥を導入することで、油分子間の相互作用が向上し、潤滑効果が向上することでを見出した。を種々の金属材料のナノ組織化試料を作製し、それらの摩擦摩耗特性評価が試料表面への吸着特性の評価を通じて、摩擦係数低減のメカニズムを調査						
	受入条件	金属材料学の	基礎を有して	いること。意欲がある学生を	と望む。			
	受入期間		募集定員	E-mail アドレス				
A1051	VI 9/6(月)~	9/17(金)	2名	教授 戸髙 義一助 教 足立 望	todaka <at>me. tut. ac. jp n-adachi<at>me. tut. ac. jp</at></at>			
	事前課題	(1) 金属を Hirsch の関係 て調査せよ。 により強度に ことで知られ	塑性変形する。 系」を調査する (2) 大きな動 は増加する。「 いている。「Ha	っとともに、転位が増殖する。 塑性変形によって、結晶粒は Hall-Petch の関係」は、結晶	習開始時に提出して下さい。 より加工硬化する。「Bailey- と強度が増加する理由につい 微細化し、結晶粒微細化強化 晶粒径と強度の関係を表わす るとともに、結晶粒が微細化			
	服装	作業ができる	服装・履物を	準備すること				
	携行品	特になし						
	実習場所	D1-401-3						
	最終日の終了時刻	午前中に報告会を行ない、報告会終了後に解散する。						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		太陽電池を作ってみよう					
	受入系		機械工学系					
	本科生:Ⅲ							
	内 容	究室保有の装	能などの評価を、薄膜材料研 術について習得する。既に作 抽出し、高効率化についての					
	受入条件	太陽電池を含むエネルギー変換に興味のある学生、意欲のある学生を望む。						
	受入期間		募集定員	担当教員	E-mail アドレス			
A1061	Ⅲ 8/30(月)~	~9/3(金)	5名	教 授 伊﨑 昌伸 助 教 Khoo Pei Loon	m-izaki <at>me.tut.ac.jp khoo<at>tf.me.tut.ac.jp</at></at>			
	事前課題	材料に関する復習をしておいてください						
	服装	作業ができる	服装・履物を	準備すること				
	携行品	特になし						
	実習場所	D1 棟 105, D	1-401室					
	最終日の終了時刻	11:00						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		物体の衝突時に生じる衝撃荷重の非接触測定					
	受入系	機械工学系						
	本科生:Ⅲ							
	非接触に測定を行う. 里を理解する.							
	受入条件	材料力学に興味のある学生,意欲のある学生を望む.						
A1071	受入期間	İ	募集定員	担当教員	E-mail アドレス			
	Ⅲ 8/30(月)~9/3(金)		2名	教 授 足立 忠晴 准教授 竹市 嘉紀	adachi <at>me.tut.ac.jp takeichi<at>tut.jp</at></at>			
	事前課題		ご質点の衝突に 医習初日に提出	関する理論を A4 用紙 1 枚の l する.	/ポートにまとめる.			
	服装	作業ができる	服装・履物を	・準備すること				
	携行品	特になし						
	実習場所 D1 棟 101 室							
	最終日の終了時刻	11:00						
	備考	特になし						
	オンライン実習	否						

	受入テーマ	軽量自動車部品の成形技術の開発								
	受入系		機械工学系							
	受入区分	本科生:Ⅲ								
	内 容	技術の開発	自動車の軽量化に対して注目されている高張力鋼板やアルミニウム合金板などの成形技術の開発を行う. 高張力鋼板のプレス成形, せん断加工, ヘミング, ホットスタンピングおよびメカニカルクリンチングによる接合など.							
	受入条件	塑性加工学	の基礎知識を有	有していること						
	受入期間		募集定員	担当教員	E-mail アドレス					
	Ⅲ 8/30(月)~9/3(金)		1名	准教授 安部 洋平	abe <at>plast.me.tut.ac.jp</at>					
A1081	事前課題	自動車の軽量化に対して注目されている軽量材料である ・高張力鋼板、超高張力鋼板、ダイクエンチ鋼板 ・アルミニウム合金板 ・炭素繊維強化樹脂 について特徴やプレス加工や溶接などにおける問題点について調べ、A4 レポートに まとめる。文章だけでなく、図をたくさん用いて示す。								
	服装	作業時は作	業服,安全靴を	≥着用						
	携行品	作業服,安全	全靴,筆記用具	1						
	実習場所	D2 棟 402 室 (実験)	,またはD2棟	₹401室かD2棟408室(居	室), D1棟104室, D3棟104室					
	最終日の終了時刻	12 時を予定	(別途調整可)							
	備考	特になし			-					
	オンライン実習	否								

	受入テーマ		振動工学に関する基礎実験					
	受入系	機械工学系						
	受入区分	本科生:Ⅲ 振動工学の理論を簡易な実験装置を利用して実体験する. ・振動工学の基礎理論の確認 ・振動現象の測定方法の実習 ・強制振動の計測と処理 ・振動特性の推定 ・動吸振器の理論の確認と実習						
	内 容							
	受入条件	振動工	振動工学に興味のある学生、意欲のある学生を望む.					
	受入期間		募集定員	担当教員	E-mail アドレス			
A1091	Ⅲ 8/30(月)~9/	/3(金)	3名	教 授 河村 庄造 准教授 松原 真己	kawamura.shozo.qk <at>tut.jp matsubara.masami.od<at>tut.jp</at></at>			
	事前課題	機械力学(振動工学)が既習の場合:実習に関連する部分の復習機械力学(振動工学)が未習の場合:微分方程式,線形代数の基礎の復習いずれも事前学習した内容(項目)をA4レポート1枚にまとめる.						
	服装	特にな	L					
	携行品	特にな	L					
	実習場所	D3 棟 30)1 号					
	最終日の終了時刻	11:00						
	備考	特にな						
	オンライン実習	否						

	受入テーマ		手作り雷発生装置の設計と作製					
	受入系	電気・電子情報工学系						
	受入区分	本科生: I						
	内 容	高電圧技術は電力分野の基盤技術であり、環境・医療などの分野では応見として積極的な利用がなされている。高電圧のハードウェアの取扱いとのニーズは高い。本実習では、高電圧発生回路を期間中に1人1台、自任した雷電圧を計測し、電気回路や電磁気学の知識を用いて、その発生機構る。						
	受入条件	特にる	特にありません。					
A2011	受入期間		募集定員	担当教員	E-mail アドレス			
112011	I 8/23(月)∼8/2	7(金)	2名	教授 穗積 直裕助 教川島 朋裕	hozumi.naohiro.uv <at>tut.jp kawashima.tomohiro.et<at>tut.jp</at></at>			
	事前課題		レポートとして提出する必要はありませんが、バンデグラフやインパルス電圧発生器 などの高電圧発生回路にについて調べて来てください。					
	服装	作業次	ができる服装・	履物を準備すること				
	携行品	特に	なし					
	実習場所	C1-10)2					
	最終日の終了時刻	11:00						
	備考	特に	 ````````````````````````````````					
	オンライン実習	否						

	受入テーマ		リチウムイオン電池用電極の作製・評価						
	受入系		電気・電子情報工学系						
受入区分					本科生: VI				
	・リチウムイオン電池用電極の作製及び電気化学特性評価 内容・走査電子顕微鏡を用いたリチウムイオン電池用電極材料の微細構造 (※研究の進展に伴い、上記の内容は多少異なる場合があります)								
	受入条件 電気化学・各種電池に興味のある学生、意欲のある学生を望む								
	受入期間		E-mail アドレス						
A2021	VI 9/6(月)~9/17(金)		2名	准教授 稲田 亮史	inada <at>ee. tut. ac. jp</at>				
	事前課題	リチウムイオン電池の基本構成・動作原理・特徴について調べ、A4 用紙 1-2 t ポートにまとめる。実習初日に提出する。			て調べ、A4 用紙 1-2 枚のレ				
	服装	作業ができる	が服装・履物を	準備すること					
	携行品	USB メモリ、	筆記用具、ノ	ートパソコン(なくても OK、	ある方は持参を勧めます)				
	実習場所	E4 棟 104/10	5 室、総研棟	202 室					
	最終日の終了時刻	11:00							
	備考	爪を伸ばして	こいると装置を	傷つけるため、適度な長さに	切って頂きます。				
	オンライン実習	否							

	受入テーマ	半導体集積回路の作製及び評価					
	受入系	電気・電子情報工学系					
	受入区分	本科生:Ⅲ					
	内 容	スマートフォンのプロセッサは Si 半導体集積回路からなり,また,自動車は半導体で動いていると言っても過言ではない.このように今日の社会に不可欠な Si 半導体集積回路 について,その作製要素技術である薄膜の形成,フォトリソグラフィ,およびエッチングを行う.その後作製した MOSFET および集積回路 (4 ビットカウンター、リングオシレータ)の電気特性を評価する.またデモ実験を通じてセンサ・集積回路に関する最先端の研究に触れる.以上を通じて Si 半導体集積回路の基礎とその作製技術を体得する.					
	受入条件	集積回路が	作られる過程は	二興味のある学生,意欲のある	学生を望む.		
	受入期間		募集定員	担当教員	E-mail アドレス		
A2031	Ⅲ 8/30(月)~9/3(金)		5名	教 授 澤田 和明 准教授 河野 剛士 准教授 髙橋 一浩 准教授 野田 俊彦 助 教 崔 容俊	kazuaki.sawada <at>tut.jp kawano<at>ee.tut.ac.jp takahashi<at>ee.tut.ac.jp noda-t<at>eiiris.tut.ac.jp choi<at>ee.tut.ac.jp</at></at></at></at></at>		
	事前課題	MOSFET の動 提出期限:実		その作製工程を調べて A4 レポ	ート一枚程度にまとめる.		
	服装	クリーンウ	ェア(つなぎ・	帽子) 着用可能な服装. 靴下着月	刊.		
	携行品	ノートパソ	コン(応相談)				
実習場所 固体機能デバイス施設, VBL				BL			
	最終日の終了時刻 16:00						
	備考	特になし					
	オンライン実習	否					

	受入テーマ		微細な半導体光デバイスの評価と応用						
	受入系	電気・電子情報工学系							
	受入区分	本科生: VII							
	以下のテーマの中のいずれか1つのテーマに取り組む。 (1) 脳科学に活用するLED および脳波計測シートの作製と評価 (2) 光通信や光計測に利用する近赤外光センサの評価 (3) 化合物太陽電池材料の評価								
	受入条件	半導体光デバイスに興味のある学生							
	受入期間		募集定員	担当教員	E-mail アドレス				
A2041	VII 9/13(月)~9/17(金)		2名	准教授 関口 寛人 教 授 石川 靖彦 助 教 山根 啓輔	sekiguchi <at>ee. tut. ac. jp ishikawa<at>ee. tut. ac. jp yamane<at>ee. tut. ac. jp</at></at></at>				
	事前課題	-		デバイス(LED, 光検出器, 太陽 習当日に提出すること	帰電池)について調べ,A4				
	服装	作業ができる	る服装・履物を	と準備すること					
	携行品	特になし							
	実習場所	C-613							
	最終日の終了時刻	11:00							
	備考	特になし							
	オンライン実習	否							

	受入テーマ	ソフトウェア無線による通信実験							
	受入系	電気・電子情報工学系 本科生:Ⅲ							
	受入区分								
	内 容	無線通信の変復調,アクセス方式の基礎を学んだ後,我々の研究室で開発しているソフトウェア無線プラットフォームを用いて,電波暗室で伝送実験を行います。							
	受入条件 無線通信に興味がある意欲的な学生を望む								
	受入期間		募集定員	担当教員	E-mail アドレス				
A2051	Ⅲ 8/30(月)~9/3(金)		2名	教 授 上原 秀幸 助 教 宮路 祐一	uehara <at>tut.jp miyaji<at>ee.tut.ac.jp</at></at>				
	事前課題	(実習受講法	ディジタル無線通信の変復調に関する演習課題 (実習受講決まり次第,宮路宛連絡してください) 提出方法:実習初日にレポート用紙にて直接提出						
	服装	電波暗室でのしてください		汚れる怖れがあります。	実習服等の汚れても良い服を持参				
	携行品	特になし							
	実習場所	C2棟308室	および電波暗室	3					
	最終日の終了時刻 11:00 予定 (報告会終了次第)								
	備考	実験装置およ	び実習場所の	都合上,専攻科生も含め	て2名までの受け入れとします。				
	オンライン実習	否							

	受入テーマ	プラズマを用いた機能性薄膜の合成							
	受入系		電気・電子情報工学系						
	受入区分		本科生: VI						
	・プラズマを用いたダイヤモンドライクカーボン (DLC) 膜の成膜と機械が の応用 内容 ・ラマン分光法などによる DLC 膜の構造分析,その他機能性評価								
		(※研	究の進展に伴	い,上記の内容は多少異なるな	場合があります。)				
	受入条件	特にな	:L						
	受入期間		募集定員	担当教員	E-mail アドレス				
A2061	VI 9/6(月)~9/1	7(金)	2名	教授 滝川 浩史 講師 針谷 達 助教 坂東隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp -</at></at>				
	事前課題				成"について調べてくる。実験中に があります。レポート提出はありま				
	服装	作業が	できる服装・	履物を準備すること					
	携行品	特にな	:L						
	実習場所	C3-103	}						
	最終日の終了時刻								
	備考	特にな	:1						
	オンライン実習	否							

	受入テーマ	農業への電気エネルギーの有効利用							
	受入系		電気・電子情報工学系						
	受入区分		本科生: VI						
	・プラズマを用いた植物栄養水の生成とその評価・プラズマ生成オゾンによる生花の日持ち評価内容・植物成長のための光計測とその評価								
	(※研究の進展に伴い、上記の内容は多少異なる場合がありま								
	受入条件	特にな	3L						
	受入期間		募集定員	担当教員	E-mail アドレス				
A2071	VI 9/6(月)~9/1	7(金)	2名	教 授 滝川 浩史 講 師 針谷 達 助 教 坂東 隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp -</at></at>				
	事前課題	る。実			'植物と光波長"について調べてくいて聞くことがあります。レポート				
	服装	作業が	できる服装・	履物を準備すること					
	携行品	特にな	:1						
	実習場所	自然工	ネルギー実験	棟 203					
	最終日の終了時刻 12:00 予定								
	備考	特にな	:1						
	オンライン実習	否							

	受入テーマ	テーマ 自然・電気エネルギーの計測と有効利用							
	受入系		電気・電子情報工学系						
	受入区分	本科生: VI							
	内 容	 各種 	・太陽電池を用いた日射量・光量子量の計測 ・各種気象計測システムで得られたデータの分析と有効利用 ・太陽電池センサを用いた雲影の移動観測						
		(※研	(※研究の進展に伴い、上記の内容は多少異なる場合があります。)						
	受入条件	特にな	:L						
	受入期間		募集定員	担当教員	E-mail アドレス				
A2081	VI 9/6(月)~9/1	7(金)	2名	教 授 滝川 浩史 講 師 針谷 達 助 教 坂東 隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp -</at></at>				
	事前課題		インターネット等で、自然・電気エネルギーについて調べてくる。実験中に事前課題 で調べてもらった内容について聞くことがあります。レポート提出はありません。						
	服装	作業ができる服装・履物を準備すること。日射病予防のため、帽子・タオルを持参すること。							
	携行品	特にな	:L						
	実習場所	自然工	ネルギー実験	棟 203					
	最終日の終了時刻	12:00	予定						
	備考	特にな	:L						
	オンライン実習			よる緊急事態宣言等の場合に ンでの実施を保証するもので					

	受入テーマ	プラズマを用いた機能性薄膜の合成					
	受入系	電気・電子情報工学系					
	受入区分	本科生: VII					
	内 容	の応用・ラマ	・プラズマを用いたダイヤモンドライクカーボン(DLC)膜の成膜と機械加工工具への応用 ・ラマン分光法などによる DLC 膜の構造分析,その他機能性評価				
		(※研	一究の進展に伴	い,上記の内容は多少異なる	場合があります。)		
	受入条件	特にな	特になし				
	受入期間		募集定員	担当教員	E-mail アドレス		
A2091	VII 9/13(月)~9/1	17(金)	2名	教授 滝川 浩史 講師 針谷 達 助教 坂東隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp</at></at>		
	事前課題				成"について調べてくる。実験中に があります。レポート提出はありま		
	服装	作業が	できる服装・	履物を準備すること			
	携行品	特にな	:1				
	実習場所	C3-103	3				
	最終日の終了時刻	12:00	予定				
	備考	特にな	:1				
	オンライン実習	否					

	受入テーマ	農業への電気エネルギーの有効利用							
	受入系		電気・電子情報工学系						
	受入区分		本科生: VII						
	内 容	・プラ	ズマ生成オゾ	植物栄養水の生成とその評価 ンによる生花の日持ち評価 光計測とその評価					
		場合があります。)							
	受入条件	特にな	こなし						
	受入期間		募集定員	担当教員	E-mail アドレス				
A2101	VII 9/13(月)~9/1	17(金)	2名	教 授 滝川 浩史 講 師 針谷 達 助 教 坂東 隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp -</at></at>				
	事前課題	る。実			'植物と光波長"について調べてくいて聞くことがあります。レポート				
	服装	作業が	できる服装・	履物を準備すること					
	携行品	特にな	:1						
	実習場所	自然工	ネルギー実験	棟 203					
	最終日の終了時刻	12:00	予定						
	備考	特にな	:1						
	オンライン実習	否							

	受入テーマ			自然・電気エネルギーの計	測と有効利用				
	受入系		電気・電子情報工学系						
	受入区分		本科生:VII						
	内 容	 各種 	日射量・光量子量の計測 テムで得られたデータの分析。 用いた雲影の移動観測	ムで得られたデータの分析と有効利用					
		(※研	(※研究の進展に伴い、上記の内容は多少異なる場合があります。)						
	受入条件	特にな	:L						
	受入期間		募集定員	担当教員	E-mail アドレス				
A2111	VII 9/13(月)~9/1	17(金)	2名	教 授 滝川 浩史 講 師 針谷 達 助 教 坂東 隆宏	takikawa.hirofumi.cg <at>tut.jp harigai.toru.un<at>tut.jp -</at></at>				
	事前課題		インターネット等で、自然・電気エネルギーについて調べてくる。実験中に事前課題 で調べてもらった内容について聞くことがあります。レポート提出はありません。						
	服装	作業ができる服装・履物を準備すること。日射病予防のため、帽子・タオルを持参ること。							
	携行品	特にな	:L						
	実習場所	自然工	ネルギー実験	棟 203					
	最終日の終了時刻	12:00	予定						
	備考	特にな	:1						
	オンライン実習			よる緊急事態宣言等の場合にレ ンでの実施を保証するものでし	· · · · · · · · · · · · · · · · · · ·				

	受入テーマ	水中ワイヤレス電力・情報伝送							
	受入系	電気・電子情報工学系							
	受入区分	本科生: V							
	内 容	淡水・海水中で自立型無人潜水艇に電力と情報を送るために必要となる RF 回路作と実験を通して学ぶ. ・回路シミュレーションで動作原理を学ぶ. ・電磁界シミュレーションで視覚的に現象を理解する. ・実証実験を行う. ※ 具体的な実験手法や到達目標は受講者の経験に合わせて調節しますが、初心者のための講座ではないことを予め御理解ください. 電気回路および行列計算を十分理解しており、自発的に回路設計ができること.							
	受入条件								
A2121	受入期間		募集定員	担当教員	E-mail アドレス				
	V 9/6(月)~9/10(金)		1名	准教授 田村 昌也	tamura <at>ee.tut.ac.jp</at>				
	事前課題	後日指定する	Eするので、実習受講が決まり次第、田村宛連絡してください.						
	服装	作業ができる	服装・履物を	準備すること					
	携行品	特になし							
	実習場所	C2 棟 303 室 12:00 を予定							
	最終日の終了時刻								
	備考	特になし							
	オンライン実習	否							

	受入テーマ		高性能プログラミング技術の応用							
	受入系		電気・電子情報工学系							
	受入区分		本科生:VII							
	内 容	昨今のマイクロプロセッサは複数レベルのキャッシュを搭載し、SIMD 技術やマルチコア技術も採用されている。このような複雑なシステムを利用し、その性能を引き出すためには、計算機アーキテクチャの知識に基づいた高性能プログラミングの技術が不可欠である。 本テーマの前半では、簡単なプログラミング例を用いて性能評価の基礎知識を習得し、キャッシュやメモリ帯域と性能の関係、さらに SIMD 命令の利用による性能向上、マルチコアの利用による並列化、などを紹介する。テーマの後半では、受講者自身の持つプログラムを対象として、前半で学んだ性能測定技術や高性能化技術を実装・評価する。 本テーマは卒業研究等でプログラムの高速化を必要としている学生が対象である。								
A2131	受入条件	・基礎的な C ・卒業研究等	機アーキテクチャの基礎知識を有していること. 的なC言語プログラミング技術を有していること. 研究等でプログラムの高速化を必要としていること. マの後半で使用するプログラムを既に持っているもの)							
	受入期間		募集定員	担当教員	E-mail アドレス					
	VII 9/13(月)~9/17(金)		2名	教 授 市川 周一	ichikawa <at>tut.jp</at>					
	事前課題	ム」について どをA4紙1~	,何のための	か,そして上記受入条件第3 プログラムか,なぜ高速化し 8月1日までに担当者にメール します.	たいか、達成目標は何か、な					
	服装	作業ができる	服装・履物を	準備すること						
	携行品			利用するため自分のノートPC いですが,貸出・持出不能なの	·					
	実習場所	C1棟303室								
	最終日の終了時刻	11:00								
	備考	実験装置およ	び実習場所の	都合上,2名までの受け入れる	を原則とします。					
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり						

	受入テーマ 深層学習を利用した「6G」ワイヤレス通信技術の体験							
	受入系	電気・電子情報工学系						
	受入区分	本科生: VII						
	内 容	目的:既に商用化が行われた第5世代移動通信システム(5G)の次である「6G」に向けて、人知を超えた復調方式の初歩的な創出方法を体験する。 方法:21世紀初頭の3G時代の復調手法を基にして、人口知能(AI)の分野で発な研究が行われている深層学習を利用して、人間では考案不可能な復調方式を創する。得られた復調方式の性能をPythonによる数値実験によって評価する。						
l	受入条件	実機実験を一	切行わない実	習テーマであることを了承	にしている学生			
10141	受入期間		募集定員	担当教員	E-mail アドレス			
A2141	VII 9/13(月)~9/17(金)		2名	准教授 竹内 啓悟	takeuchi <at>ee.tut.ac.jp</at>			
	事前課題	出題方法: >	ハルで送るの	論的な問題を出題する。 で、受入決定後に竹内宛に 果をまとめたレポートを初				
	服装	ラフな服装で良い。						
	携行品	特になし。						
	実習場所	D4棟205	5号室					
	最終日の終了時刻 11:00 を予定							
	備考	Python に関する。	する知識は要求	されないが、C 言語による	プログラミング経験は必須であ			
	オンライン実習	否						

	受入テーマ	ウェアラブル・携帯端末を用いた人の行動・移動データ取得と分析							
	受入系	情報・知能工学系							
	受入区分	本科生: VI							
	内 容	1. ウェアラブルセンサやスマートフォンを用いて、人の行動や街中での移動に関るデータ取得実験を行なう。 2. また、取得したデータについて、データの可視化やアノテーション付与、人工能技術の基礎原理を用いた分析プログラムを作成するなどして分析を行なう。 3. 取得したデータの内容やその分析結果をまとめ、発表を行う。							
	受入条件	プログラミン	ブラミングの基礎知識を有していること。データ処理に興味のある学生を望む。						
	受入期間		募集定員	担当教員		E-mail アドレス			
A3011	VI 9/6(月)~9/17(金)		4名	准教授 大村 廉		ren <at>tut.jp</at>			
	事前課題	ておくことを		, 可能であれば, パタ		に関する技術について勉強し 識技術を使用したプログラム			
	服装	動きやすい肌	段装・履物を準	備すること					
	携行品	特になし(ス	スマートフォン	を持っていればスマー	・トフォ	ン持参が望ましい)			
	実習場所	C 2棟401 る)	教室(ただし	,実験はキャンパス内	や豊橋	市街地で行なう可能生もあ			
	最終日の終了時刻	等刻 午前中を予定							
	備考	特になし							
	オンライン実習	否			_				

	受入テーマ		ロボットプログラミング入門					
	受入系	情報・知能工学系						
	受入区分 本科生: V							
	内 容	ロボットは(1)センサによる外界情報の獲得,(2)目的を達成するためのそして(3)計画に基づいた行動の実行,の3つのステップの繰り返しで重テーマでは、カメラを持つ移動ロボットを使って、それらの3つのステることにより、ロボットのプログラミングを体験する.プログラム開発は、世界中で標準的に使われているROS (Robot Operating System)をりの前半でROS および基本機能のプログラムを学び、後半で自由課題に取						
	受入条件	プログラミングの経験(C++推奨, Python でも可) があること. ロボットがあること.						
A3021	受入期間]	E-mail アドレス					
	V 9/6(月)~9/10(金)		6名	教 授 三浦 純 助 教 林 宏太郎	jun.miura <at>tut.jp hayashik<at>cs.tut.ac.jp</at></at>			
	事前課題	特になし						
	服装	特に要望なし	/					
	携行品	特になし						
	実習場所	イノベーショ	ン総合研究棟	頁(I−1 棟)101 号室				
	最終日の終了時刻	1 11:00						
	備考	特になし						
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり	· · · · · · · · ·			

	受入テーマ	ーマ コンピュータの性能解析ツールに関する基礎実験							
	受入系		情報・知能工学系						
	受入区分		本科生: I						
	内 容	コンピュータの性能を測定し分析する手法についての実習を行う。計算機のベンデーク手法について学習した後、実際のベンチマークコードを用いて様々なコンピュタの性能を計測する。さらに、性能に関する指標をコード実行中に取得するためにコンパイル済みの実行コードにバイナリ計装技術を用いて性能解析を行う機能を関込む実験を行い、性能に関する統計値の分析を行う。							
受入条件 計算機アーキテクチャやプログラミング技術に興味のある				る学生を望む。					
A3031	受入期間	受入期間		担当教員	E-mail アドレス				
110 10 1	I 8/23(月)∼8/27(金)		5名	准教授 佐藤 幸紀	yukinori <at>cs. tut. ac. jp</at>				
	事前課題		たビルド環境に 慣れておくこ	の構築、C/C++言語によるプロ と	グラミング、Python スクリ				
	服装	特に指定なし							
	携行品	ノートPCを	特参						
	実習場所	F1 棟 309 室							
	最終日の終了時刻	11:00							
	備考	特になし							
	オンライン実習	否							

	受入テーマ	視覚心理物理学実験演習					
	受入系	情報・知能工学系					
	受入区分	本科生: I					
	内 容	「見る」ことは実は簡単なことではなく、脳と身体による洗練されたメカニズムに基づいて成立している人の機能の1つです。知覚の心理物理学は、見ることを研究するための方法です。この実習では、知覚心理学に関する概説講義・デモ、心理物理実験の実施、そして自らデータ解析を行い、心理物理学的研究を体験してもらいます。予定している実験実習テーマは、幾何学的錯視、運動視、視覚探索です。大学学部2年生レベルの基礎実験演習を参考とします。					
	受入条件	知覚、認知に興味のある学生、意欲のある学生を望む。					
A3041	受入期間		募集定員	担当教員	E-mail アドレス		
	I 8/23(月)∼8/27(金)		1名	教授 北﨑 充晃	mich <at>tut.jp</at>		
	事前課題	課題:両眼立体視,ホロウマスク錯視,サビタイジング,触二点閾のいずれかにる内容を調べて,スライド2-3枚にまとめる。 提出方法:実習初日にスライドを使って発表					
	服装	清潔感があり	,堅苦しくな	い楽な格好			
	携行品	眼鏡・コンタ	クトレンズ着	用者は必ず持参すること			
	実習場所	F棟207室					
	最終日の終了時刻	12:00					
	備考	特になし					
	オンライン実習	否					

	受入テーマ		į	認知研究における実験の基	礎		
	受入系	大系 情報・知能工学系					
受入区分 本科生: I 私たちは普段、物を見て、聞いて、理解し、行動する。本研究室では、知」を支えている脳機能や仕組みを解明するとともに、そうした基礎した。 れた新しい認知情報処理技術の開発を目指している。本体験学習では、眼球運動計測実験において実験者、被験者の立場を体験することで認実験の基礎を学ぶ。https://sites.google.com/site/minamicnt/					本科生: I		
					そうした基礎研究に裏打ちさ 体験学習では脳波測定実験や することで認知研究における		
	受入条件	プログラミング経験があることが好ましい. 脳研究に興味のある方					
	受入期間		募集定員	担当教員	E-mail アドレス		
A3051	I 8/23(月)~	·8/27(金)	2名	教 授 南 哲人 助 教 田村 秀希	minami <at>tut.jp</at>		
	事前課題	ヒトの認知に関して普段不思議に思っていることについて、A4 レポート 1 枚にまるめる. 実習初日に提出。 例)見る人によって違う色に見えるドレス http://gigazine.net/news/20150303-12-optical-illusions/					
	服装	特になし					
	携行品	眼鏡等(必要	な方,ブルーラ	ライトカットでないものが望ま	ELV)		
	実習場所	総合研究実験	€棟 702-1				
	最終日の終了時刻	12:00					
	備考	特になし					
	オンライン実習	否					

	受入テーマ		計算機シミ	ミュレーションを用いて新	変を提案する		
	受入系		情報・知能工学系				
	受入区分	本科生: Ⅶ 近年の計算機の高速化、及び分子シミュレーション手法の進歩により、タンパク質 DNA などの生体高分子に対する分子シミュレーションが実行可能になっています。の結果を基に、様々な病気に対する新薬の提案や発病機構の予測も可能になりつつります。この体験実習では、分子シミュレーションを用い、生体高分子の安定構造電子状態などを解析します。その結果が、実際の新薬の提案にどのように活かせるを体験して欲しいと考えています。					
	内 容						
	受入条件	計算機を使うこと、及び生物に興味のある学生が望ましい。					
A3061	受入期間		募集定員	担当教員	E-mail アドレス		
	VII 9/13(月)~9/17(金)		3名	准教授 栗田 典之	kurita <at>cs. tut. ac. jp</at>		
	事前課題	タンパク質、 提出して下さ		 薬に関して、A4 レポート1枚	にまとめ、実習の開始時に		
	服装	特になし					
	携行品	ノートPC を	持参してくだ	さい。			
	実習場所	総研棟 6 階	-606, 5 階-50	06			
	最終日の終了時刻	12:00					
	備考	特になし					
	オンライン実習	否					

	受入テーマ		ルール発見のための条件つき確率の推定方法の検討							
	受入系		情報・知能工学系							
	受入区分	本科生: I								
	内 容	問題はデ つき確率 因果関係 うに確率 も問題点	れたときに、前提が生じている題と考えることができる。本まを発見する状況において、限らを実習する。通常に用いられて を通じて学習したのちに、本品	スの典型的な応用例である. このるときに結果が現れる確率(条件テーマではデータの中に存在するられた個数のデータから, どのよている最尤推定と呼ばれる方法の研究室で扱っている方法を利用するメータの変化を求める事を行						
	受入条件									
A3071	受入期間		募集定員	担当教員	E-mail アドレス					
	I 8/23(月)∼8/	/27(金)	8名	教授 梅村 恭司助 手 廣中 詩織	umemura <at>tut.jp hironaka.shiori.qp<at>tut.jp</at></at>					
	事前課題	観測から	の確率の推定	について、簡単な例題と資料を	を用意する.					
	服装	特に指定	なし.(コン	ピュータ作業)						
	携行品	筆記用具	•							
	実習場所	F1-211								
	最終日の終了時刻	15:00								
	備考	特になし	,							
	オンライン実習	否								

	受入テーマ		ヒト腕運動の計測と解析					
	受入系		情報・知能工学系					
	受入区分	本科生:Ⅲ						
	内 容	ヒトの巧みな運動を運動を実現している脳の情報処理メカニズムを調べるため、モションキャプチャを用いて、線を描くなど、ヒト腕の典型的な運動を計測・解析する. さらにその解析結果から腕運動が持つ普遍的な特徴について調べ、その特徴を覚現しているヒトの運動制御の仕組みを考察する.						
	受入条件 C 言語,Matlab などのプログラム言語をある程度習得していることか				ていることが望ましい			
	受入期間		募集定員	担当教員	E-mail アドレス			
A3081	Ⅲ 8/30(月)~9/3(金)		6名	准教授 福村 直博	fukumura <at>cs.tut.ac.jp</at>			
	事前課題	時系列データを計測・解析するために必要となるローパスフィルタについて、 てくること。						
	服装	特になし	特になし					
	携行品	成果を持ち帰 こと	^{見ることを希望}	する場合にはUSBメモリを持	参するなど、各自で準備する			
	実習場所	F棟411室						
	最終日の終了時刻 最終日の午前中に成果報告会を行い、終了次第解散							
	備考	特になし						
	オンライン実習	否						

	受入テーマ		ヒト腕運動の計測と解析					
	受入系		情報・知能工学系					
	受入区分	本科生: V						
	内 容	ヒトの巧みな運動を運動を実現している脳の情報処理メカニズムを調べるため、モションキャプチャを用いて、線を描くなど、ヒト腕の典型的な運動を計測・解析する. さらにその解析結果から腕運動が持つ普遍的な特徴について調べ、その特徴を現しているヒトの運動制御の仕組みを考察する						
	受入条件 C 言語,Matlab などのプログラム言語をある程度習得していることが				ていることが望ましい			
	受入期間		募集定員	担当教員	E-mail アドレス			
A3092	V 9/6(月)~9/10(金)		6名	准教授 福村 直博	fukumura <at>cs.tut.ac.jp</at>			
	事前課題	時系列データ てくること。	で計測・解析	するために必要となるローパ	スフィルタについて、予習し			
	服装	特になし						
	携行品	成果を持ち帰こと	吊 ることを希望	する場合にはUSBメモリを持	参するなど、各自で準備する			
	実習場所	F棟411室						
	最終日の終了時刻 最終日の午前中に成果報告会を行い、終了次第解散							
	備考	特になし						
	オンライン実習	否						

	受入テーマ		系列変換モデルの基礎的実験				
	受入系		情報・知能工学系				
	受入区分		本科生: I				
	内 容	その原理を学	ューラルネットワークによる系列変換モデルについて、統計的機械翻訳を例に 理を学ぶ。また、系列変換モデルの応用として、機械翻訳、自動要約、音声認 どの自然言語処理の問題に適用するとともに、種々の改善手法を実験する。				
	受入条件	自然言語処理	自然言語処理・音声言語処理に興味を持つ、意欲のある学生を望む。				
	受入期間		募集定員	担当教員	E-mail アドレス		
A3101	I 8/23(月)~	I 8/23(月)~8/27(金)		准教授 秋葉 友良	akiba <at>cs.tut.ac.jp</at>		
	事前課題	機械学習の基礎に関する事前課題の実施(課題図書は後日指定します)					
	服装	特になし					
	携行品	特になし					
	実習場所	C2-407					
	最終日の終了時刻	10:00 から報告会を行い終了次第解散					
備考特になし							
	オンライン実習	否					

	受入テーマ		複合現実感の原理理解とアプリケーションの作成				
	受入系		情報・知能工学系 本科生: II				
	受入区分						
	内 容	本研究室で提案した円形マーカーを用いたカメラの姿勢推定の理論を学ぶとともに複合現実感システムの基本アプリケーションをもとに独自の複合現実感アプリケーョンを作成する。 1. 円形マーカーを用いたカメラの姿勢推定の原理の講義 2. 基本アプリケーションの解説 3. 基本アプリケーションをもとにした独自の複合現実感アプリケーションの作成コンピュータビジョンや複合現実感に興味のある学生、意欲のある学生を望む。					
	受入条件						
A3111	受入期間		募集定員	担当教員	E-mail アドレス		
	Ⅱ 8/23(月)~	9/3(金)	4名	准教授 菅谷 保之	sugaya <at>iim.cs.tut.ac.jp</at>		
	事前課題	特にありま	せん				
	服装	特になし((普段着で構わ	ない)			
	携行品	特になし					
	実習場所	C3 棟 511 室 11:00					
	最終日の終了時刻						
	備考	特になし					
	オンライン実習	否					

	受入テーマ	医療画像からの健常か罹患かの判定								
	受入系		情報・知能工学系							
	受入区分	本科生: VI								
	内 容	ImageCLEF (MedCLEF)という国際コンテストで使用されている医療データ (CT 画像、MRI 画像、その他)をもとに、病気があるかないかを AI 技術を用いて画像から判定する作業を体験してもらう。これに向けて第一週は、深層学習での画像分類を行い、第二週目に医療画像特有の処理を通して、Ai 診断を試みる。言語は Python を用いる。								
	受入条件	画像データ	タ処理に興味か	ぶあること。プログラムや深層	学習にも興味があること。					
A3121	受入期間		募集定員	担当教員	E-mail アドレス					
110121	VI 9/6(月)~9/17(金)		2名	教授 青野 雅樹助 教浅川 徹也	masaki.aono.ss <at>tut.jp asakawa<at>kde.cs.tut.ac.jp</at></at>					
	事前課題	なし								
	服装	作業ができ	きる服装・履物	のを準備すること						
	携行品	特になし								
	実習場所	C棟C3-	-510							
最終日の終了時刻 11:00										
	備考	オンライン もらう予知		gle Collab + Keras (or Tens	sorFlow version 2.X)を使って					
	オンライン実習			5緊急事態宣言等の場合には, での実施を保証するものではあ	· · · · · · · ·					

	受入テーマ		量子们	と学計算を活用した化学反応	ぶの探索		
	受入系	応用化学・生命工学系					
受入区分 本科生: I							
量子力学の原理に基づいた理論計算は新規の分子設計や反応経路の探索 ールとなっている。このテーマでは、既存の量子化学計算パッケージを の構造やポテンシャルエネルギー、反応経路などの探索方法を体験する のパラメータを知ることで、化学熱力学的な情報、例えば生成エンタル ロピー、化学平衡定数、反応速度定数などを予測可能であることを体験 る。なおオンライン実習の場合は、ソフトウエアの関係上一部内容を変ある。				算パッケージを活用し、分子 方法を体験する. また、分子 ば生成エンタルピーやエント あることを体験的に学習す			
	受入条件	基礎的な化学、物理の知識を持っていること					
A4011	受入期間		募集定員	担当教員	E-mail アドレス		
	I 8/23(月)∼8/27(金)		2名	准教授 小口 達夫	oguchi <at>tut.jp</at>		
	事前課題	の構造につい	てよく理解し	算に関する解説文(メールに ておくこと.また,分子構造 て回答すること.			
	服装	特に指定はし	ない. (普段	着で良い.)			
	携行品	筆記用具, /	ート, USBメ	モリ			
	実習場所	G1 棟 402 号	室				
	最終日の終了時刻	11:30 頃を予定					
	備考	日程 II にも 実施とする.	設定している	が、複数の希望者が両日程に分	分かれた場合どちらか一方の		
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり			

	受入テーマ		量子化学計算を活用した化学反応の探索					
	受入系	応用化学・生命工学系 本科生: IV						
	受入区分							
	内 容	量子力学の原理に基づいた理論計算は新規の分子設計や反応経路の探索に不可かったなっている。このテーマでは、既存の量子化学計算パッケージを活用し、の構造やポテンシャルエネルギー、反応経路などの探索方法を体験する。また、のパラメータを知ることで、化学熱力学的な情報、例えば生成エンタルピーやコロピー、化学平衡定数、反応速度定数などを予測可能であることを体験的に学習る。なおオンライン実習の場合は、ソフトウエアの関係上一部内容を変更する場ある。						
	受入条件							
A4022	受入期間	期間 募集定員 担当教員 E-mail ア						
	Ⅳ 8/30(月)~9/10(金)		2名	准教授 小口 達夫	oguchi <at>tut.jp</at>			
	事前課題	の構造につい	てよく理解し	算に関する解説文(メールに ておくこと.また,分子構造 て回答すること.				
	服装	特に指定はし	ない. (普段	着で良い.)				
	携行品	筆記用具, /	ート, USBメ	モリ				
	実習場所	G1 棟 402 号	室					
	最終日の終了時刻	11:30 頃を予定						
	備考	日程 I にも記 実施とする.	党定している か	ド,複数の希望者が両日程に分	かれた場合どちらか一方の			
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり				

	受入テーマ		バイオベースポリ乳酸の合成および特性評価					
	受入系							
	受入区分	本科生: I						
	内 容	晶化挙動を評	ポリ乳酸を条件を変えて合成し、合成したポリ乳酸の分子特性、熱的特性、および結晶化挙動を評価することにより、高分子の合成条件の違いが、分子特性、熱的特性、および結晶化挙動に与える影響を理解することを目的とする。					
	受入条件	高分子材料は	高分子材料に興味のある学生、意欲のある学生を望む。					
	受入期間	- 募集定員 担当教員 E-mailアド						
A4031	I 8/23(月)~	8/27(金)	2名	教 授 辻 秀人 助 教 荒川 優樹	ht003 <at>edu. tut. ac. jp arakawa<at>tut. jp</at></at>			
	事前課題	ポリ乳酸に関 日に提出。	する書籍を読	み、理解したことを A4 レポー	-ト1枚にまとめる。実習初			
	服装	作業ができる	5服装・履物を	準備すること				
	携行品	特になし						
	実習場所	G1棟308室						
	最終日の終了時刻	11:00						
	備考	特になし						
	オンライン実習	否						

	受入テーマ 環境内物質による発達障害モデル動物の生理機能								
	受入系		応用化学・生命工学系						
	受入区分		本科生: I						
自閉症に代表される、発達期の高次神経機能障害の動物モデルを って作成し、細胞レベル、個体行動レベル、生理学レベルでの神 法を実習する。合わせて、光化学的デバイスの構成と開発、音響 発、動物や組織の取り扱いを学ぶ。					ルでの神経発達異常の観察方				
	受入条件		強い興味があれ ちを持つこと。	味があれば、専攻は問わない。動物を取り扱う実験であり、熱意と					
	受入期間		募集定員	担当教員	E-mail アドレス				
A4041	I 8/23(月)~8/27(金)		6名	講師吉田祥子	syoshida <at>ens.tut.ac.jp</at>				
	事前課題		の「神経伝達物 日までに、吉	徴を レポートする。参加者					
	服装	白衣はこち	衣はこちらにあります						
	携行品	パソコンを	所持する場合、	携行を推奨					
	実習場所	B2-303, B2-	-306, B2-307						
	最終日の終了時刻	午後2時(対応可)							
	備考	特になし							
	オンライン実習	否							

	受入テーマ	廃水処理を担う微生物群の蛍光観察							
	受入系		応用化学・生命工学系						
	受入区分	本科生: V							
	内 容	体的には、 ョン法を中 するバクテ	廃水処理を担う重要な微生物群をrRNA配列の違いによって識別する技術を学ぶ。具体的には、環境微生物学の分野でよく用いられる蛍光 in situ ハイブリダイゼーション法を中心とした微生物蛍光観察技法を用いて、嫌気性廃水処理リアクターで機能するバクテリアとアーキアの他、個々の重要微生物についても蛍光観察する。また、上述した微生物蛍光観察を実現する分子ツールの設計についても学ぶ。						
	受入条件 専攻は問わないが、微生物や水処理に興味や意欲のある学生を望む。				5学生を望む。				
	受入期間	間 募集定員 担当教員 E-mailアド							
A4051	V 9/6(月)~9/10(金)		3名	准教授 山田 剛史	tyamada <at>chem.tut.ac.jp</at>				
	事前課題		用紙1枚にまとめること。そ メタン生成アーキア、一次発						
	服装	白衣など作	業ができる服装	長・履物を準備すること					
	携行品	特になし							
	実習場所	G1棟504室							
	最終日の終了時刻 14:00 (予定)								
	備考	特になし							
	オンライン実習	否							

	受入テーマ	応用化学・生命工学系					
	受入系	応用化学・生命工学系					
	受入区分	本科生:Ⅲ					
	内 容	メソ多孔性シリカ (MS) は、1000m2/g 以上の比表面積を持ち、多量の分子やイオンを吸着する。この吸着現象は大気中や水中からの物質の分離・除去に応用できる。本テーマでは、MS とその吸着性について理解するため、次の各実験を行う。(1)アルコキシシランの加水分解による MS の調製 、(2) X 線回折を用いた規則的細孔構造の確認 、(3)-196 ℃での窒素吸着等温線測定による細孔特性化。					
	受入条件	本テーマに興味をもち、意欲的に実験に取り組める学生を望む。					
1.4001	受入期間		募集定員	担当教員	E-mail アドレス		
A4061	Ⅲ 8/30(月)~9/3(金)		2名	教 授 松本 明彦	aki <at>tut.jp</at>		
	事前課題	粉末 X 線回扣	Fの原理と X 約	A4 レポート用紙 1-2 枚程度に 泉回折ピークから Bragg の式を 里と BET 法を用いた比表面積の	を用いて面間隔を求める方		
	服装	作業ができる	服装(作業服	・白衣など)・履物を準備す	ること。		
	携行品	実験ノート	(A4 版大学ノ-	一卜),筆記具,関数電卓			
	実習場所	B 棟 B-502,	B-519				
	最終日の終了時刻	11:00					
	備考	特になし					
	オンライン実習	否					

	受入テーマ新規有機合成反応の開発							
	受入系		応用化学・生命工学系					
	受入区分 本科生:Ⅲ 当研究室で行なっている有機化合物の新規合成手法の開発研究の一音機合成反応の実践を通して有機反応機構を理解し、合成反応の技術なの構造解析の手法を学ぶ。合成した化合物の構造解析には核磁気共鳴クロマトグラフィー等を用い、これらの機器分析技術を併せて体験す							
	受入条件	有機化学に強い興味のある学生。本学への入学希望者を優先する。						
	受入期間		担当教員	E-mail アドレス				
A4071	Ⅲ 8/30(月)~	~9/3(金)	3名	准教授 柴富 一孝	shiba <at>chem.tut.ac.jp</at>			
	事前課題		ている有機化 出する必要は	学の教科書の内容を復習して: ない。	おく。			
	服装	作業ができる	服装・履物を	準備すること				
	携行品	特になし						
	実習場所	B2棟506室						
	最終日の終了時刻	応相談						
	備考	特になし						
	オンライン実習	否						

	受入テーマ 新規有機合成反応の開発					
	受入系	応用化学・生命工学系				
内 容 機合成反応の実践を通して有機反応機構を理解し、合成反応の の構造解析の手法を学ぶ。合成した化合物の構造解析には核磁						
					当研究室で行なっている有機化合物の新規合成手法の開発研究の一部を体験する。有機合成反応の実践を通して有機反応機構を理解し、合成反応の技術および有機化合物の構造解析の手法を学ぶ。合成した化合物の構造解析には核磁気共鳴装置、高速液体クロマトグラフィー等を用い、これらの機器分析技術を併せて体験する。	
	受入条件	有機化学に強い興味のある学生。本学への入学希望者を優先する。				
	受入期間		E-mail アドレス			
A4082	IV 8/30(月)~	9/10(金)	3名	准教授 柴富 一孝	shiba <at>chem.tut.ac.jp</at>	
	事前課題		ンている有機化 昆出する必要は	学の教科書の内容を復習して ない。	おく。	
	服装	作業ができる	5服装・履物を	準備すること		
	携行品	特になし				
	実習場所	B2棟506室				
	最終日の終了時刻	応相談				
	備考	特になし				
	オンライン実習	否				

	受入テーマ		新規有機合成反応の開発					
	受入系		応用化学・生命工学系					
	受入区分	受入区分 本科生: V						
	内 容	機合成反応の構造解析の	発研究の一部を体験する。有 対応の技術および有機化合物 は核磁気共鳴装置、高速液体 併せて体験する。					
	受入条件	有機化学に強い興味のある学生。本学への入学希望者を優先する。						
	受入期間		E-mail アドレス					
A4093	Ⅴ 9/6(月)~	9/10(金)	3名	准教授 柴富 一孝	shiba <at>chem.tut.ac.jp</at>			
	事前課題		ている有機化 出する必要は	学の教科書の内容を復習して: ない。	おく。			
	服装	作業ができる	服装・履物を	準備すること				
	携行品	特になし						
	実習場所	B2棟506室						
	最終日の終了時刻	応相談						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		新規有機合成反応の開発					
	受入系		応用化学・生命工学系					
	受入区分 本科生: VI							
	内 容	機合成反応の構造解析の	発研究の一部を体験する。有 対応の技術および有機化合物 は核磁気共鳴装置、高速液体 併せて体験する。					
	受入条件	有機化学に強い興味のある学生。本学への入学希望者を優先する。						
	受入期間		E-mail アドレス					
A4104	VI 9/6(月)~	9/17(金)	3名	准教授 柴富 一孝	shiba <at>chem.tut.ac.jp</at>			
	事前課題		ている有機化 出する必要は	学の教科書の内容を復習して: ない。	おく。			
	服装	作業ができる	5服装・履物を	準備すること				
	携行品	特になし						
	実習場所	B2棟506室						
	最終日の終了時刻	応相談						
	備考	特になし						
	オンライン実習	否						

	受入テーマ	新規有機合成反応の開発						
	受入系		応用化学・生命工学系					
	受入区分 本科生: VII							
当研究室で行なっている有機化合物の新規合成手法の開機合成反応の実践を通して有機反応機構を理解し、合成の構造解析の手法を学ぶ。合成した化合物の構造解析にクロマトグラフィー等を用い、これらの機器分析技術を					マ応の技術および有機化合物 は核磁気共鳴装置、高速液体			
	受入条件	た件 有機化学に強い興味のある学生。本学への入学希望者を優先する。						
	受入期間		募集定員	担当教員	E-mail アドレス			
A4115	VII 9/13(月)~	9/17(金)	3名	准教授 柴富 一孝	shiba <at>chem.tut.ac.jp</at>			
	事前課題		高専で使用している有機化学の教科書の内容を復習しておく。 レポートを提出する必要はない。					
	服装	作業ができる	5服装・履物を	準備すること				
	携行品	特になし						
	実習場所	B2棟506室						
	最終日の終了時刻	応相談						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		大気圧低温プラズマの発生と生物応用					
受入系 応用化学・生命工学系								
	受入区分	本科生: III 近年、照射対象に熱負荷をかけない特徴を有する大気圧低温プラズマの医療応りが盛んに進められている。本実習ではプラズマ発生装置を作製し、水溶液や細りまして水溶液中で生成される活性種や細胞応答を観察する。実験を通じてプラン射に対する細胞応答機構を学ぶ。						
	内 容							
	受入条件	プラズマ応用や生命科学に興味のある学生、意欲のある学生を望む。						
	受入期間		E-mail アドレス					
A4121	Ⅲ 8/30(月)~	~9/3(金)	2名	准教授 栗田 弘史	kurita <at>chem.tut.ac.jp</at>			
	事前課題	大気圧低温フ 実習初日に携		プ・医療応用について調べ、A4	1枚にまとめたレポートを			
	服装	作業ができる	服装・履物を	準備すること				
	携行品	特になし						
	実習場所	G1-501 ほか						
	最終日の終了時刻	12:00 頃を予定。遠方からの受講者は応相談。						
	備考	特になし						
	オンライン実習	否						

	受入テーマ		環境触媒	の調製と構造・物性・触媒	特性の評価			
	受入系		応用化学・生命工学系					
	受入区分		本科生:Ⅲ 環境保全・浄化やエネルギー産業での利用を目的とする固体触媒を調製し、X線回折 法や窒素吸着等温線測定等によりその結晶構造や表面特性を解析するとともに、実際 に触媒反応試験を行って性能を評価する。					
	内 容	法や窒素吸着						
	受入条件	固体触媒に興	固体触媒に興味のある学生					
	受入期間		募集定員	E-mail アドレス				
A4131	Ⅲ 8/30(月)~	~9/3(金)	3名	教 授 水嶋 生智 助 教 佐藤 裕久 助 手 大北 博宣	mizushima <at>chem.tut.ac.jp hsato<at>chem.tut.ac.jp ohkita<at>chem.tut.ac.jp</at></at></at>			
	事前課題	触媒化学の基	は礎を復習する	こと				
	服装	化学実験に通	通した服装・履	物であること				
	携行品	特になし						
	実習場所	B2棟 203、2	04、207、208	室				
	最終日の終了時刻	11:00						
	備考	特になし						
	オンライン実習	否						

	受入テーマ	蛍やクラゲのように光る細胞でなにができるか?								
	受入系		応用化学・生命工学系							
	受入区分	本科生: V								
哺乳類由来の細胞株に、様々な遺伝子の働きが発光現象で確認できる 蛍光発光蛋白質をコードする DNA を形質導入し、マーカーである蛍光 シグナルを顕微鏡にて観察する。発光シグナルの変化が遺伝子の働き ることを理解する。										
	受入条件 分子生物学に興味のある学生、意欲のある学生を望む。									
	受入期間		E-mail アドレス							
A4141	V 9/6(月)~	9/10(金)	2名	准教授 沼野	利佳	numano <at>tut.jp</at>				
	事前課題	2008年のノーベル化学賞緑蛍光タンパク質(Green FluorescenceProtein(GFP)の発と利用)の特にロジャー・チェン先生の仕事を簡単に記事などを読むなどして予習てきてください。								
	服装	白衣があれば	ば白衣をもって	きてください。						
	携行品	特になし								
	実習場所	G棟404室								
	最終日の終了時刻	12:00								
	備考	特になし								
	オンライン実習			急事態宣言等の	•	ンラインでの対応可能。 ません。)				

	受入テーマ	合物の分離							
	受入系		応用化学・生命工学系						
	受入区分		本科生:Ⅲ						
	内 容			も一般的に用いられているクロ もに、その分離挙動について	コマトグラフィーによる有機化 考察する。				
	受入条件	分離分析化	分離分析化学に興味のある学生を望む。						
	受入期間		募集定員	担当教員	E-mail アドレス				
A4151	Ⅲ 8/30(月)~9/3(金)		2名	教 授 齊戸 美弘 特任助手 中神 光喜	saito <at>tut.jp nakagami<at>chem.tut.ac.jp</at></at>				
Miloi	事前課題	課題: クロマトグラフィーの原理、装置ならびにその応用例等について A4 レポー 用紙 1 枚に まとめる。 提出方法: 実習初日に提出							
	服装	作業ができる服装・履物を準備すること							
	携行品	特になし							
	実習場所	B棟418室	、B2棟302室	、B2棟405室					
	最終日の終了時刻								
	備考	特になし							
	オンライン実習	否							

	受入テーマ		高分	子キラル触媒の合成と不斉[文応への応用			
	受入系	応用化学・生命工学系						
	受入区分 本科生:Ⅲ							
	内 容	重合反応により、キラル触媒を組み込んだ高分子を合成し、不斉反応における角して応用する。重合による高分子合成および光学活性化合物の効率的合成法にて実習する。 有機化学や高分子科学に興味のある学生、意欲のある学生を望む。						
	受入条件							
	受入期間		募集定員	担当教員	E-mail アドレス			
A4161	Ⅲ 8/30(月)~9	9/3(金)	4名	准教授 原口 直樹 助 手 藤澤 郁英	haraguchi <at>chem.tut.ac.jp ifujisawa<at>chem.tut.ac.jp</at></at>			
	事前課題		課題:高分子キラル触媒について、A4 レポート1枚にまとめる。 是出日、方法:実習初日に直接提出する。					
	服装	作業ができ	きる服装・履物	のを準備すること				
	携行品	特になし						
	実習場所	B2 棟 404	号室					
	最終日の終了時刻	12:00 (予定)特になし						
	備考							
	オンライン実習			5緊急事態宣言等の場合には, での実施を保証するものではあ	· · · · · · · · · · · · · · · · · · ·			

	受入テーマ	本市・交通計画に関するデータ分析・シミュレーション入						
	受入系			建築・都市システム学系				
	受入区分	本科生: I						
都市計画・交通計画を考える上で基礎となるデータの収集方法、分析方現方法などを学び、実際のデータを扱った都市・交通計画に関する分析ションなどを体験する。また、都市・交通計画に関するビッグデータとのデータにも触れ、その分析方法についても体験する。本実習を通して究内容や雰囲気を把握しつつ、高専における卒業研究などに向けてデー身につけてもらう。								
	受入条件	都市計画・交通計画やデータ分析に興味のある学生を望む.						
A5011	受入期間		募集定員	担当教員	E-mail アドレス			
	I 8/23(月)∼8/27(金)		5名	准教授 杉木 直 准教授 松尾 幸二郎	sugiki <at>ace.tut.ac.jp k-matsuo<at>ace.tut.ac.jp</at></at>			
	事前課題	事前に送る資	資料を読んで実	習当日までにA4レポート1ヵ	枚程度にまとめる.			
	服装	調査等で外に	出る場合があ	るので、作業しやすい服装・)	履物.			
	携行品	持っている人	、はノートPC.	(オンラインの場合はWindow	ws10のPC必須)			
	実習場所							
	最終日の終了時刻							
	備考	特になし						
	オンライン実習			急事態宣言等の場合には、オ 実施を保証するものではあり				

	受入テーマ	建設物の振動計測とその分析							
	受入系	建築・都市システム学系							
	受入区分	本科生:Ⅲ							
	内 容	状モニタリン 実構造物での	/グについて,)計測実習を通						
	受入条件	実験と数値計	算の両方が好	きな(好きになろうと思って	いる) 学生				
	受入期間		募集定員	担当教員	E-mail アドレス				
AE001	Ⅲ 8/30(月)~9/3(金)		2名	准教授 松本 幸大	y-matsum <at>ace.tut.ac.jp</at>				
A5021	事前課題	た,本書の第 もらいます。 希望者は 事 前	54章について がに貸し出すこ	10 分程度の発表資料に纏め,	開(有名な書籍なので蔵書し				
	服装	作業ができる服装・履物を準備すること							
	携行品	関数電卓・ク	'ートパソコン	(所有している場合)					
	実習場所	総合研究実験	棟 103,低層	実験棟,D2-705,D2-707					
	最終日の終了時刻	遠距離の場合	は相談に応じ	ます					
	備考	オンライン実習の場合、計測装置を貸し出す予定で、データ収集・分析のため windows (または Linux) パソコンが必要になります。海外等で貸し出しが困難な場合はスマートフォンに内蔵されている加速度センサ (アプリ) を使用していただきます。							
	オンライン実習	· ·		急事態宣言等の場合には, オ 実施を保証するものではあり	· · · · · · · ·				

	受入テーマ		沿岸の環境	えい 防災に関する調査および	バデータ解析			
	受入系	建築・都市システム学系						
	受入区分	本科生:Ⅲ						
	内 容	遠州灘海岸における砂浜の地形変化や三河湾における津波・高潮災害に関する調査,豊川河口・干潟域での流れや地形の調査およびそれらのデータ解析などを行う。大学周辺地域の水域における環境や防災に関する問題に触れ、問題意識を持ってもらうとともに、専門分野における技術・知識の応用について学ぶ。(天気が良ければ、海岸など屋外でのフィールド調査も行う。)						
	受入条件	水域の環境や防災,自然環境に興味のある人,好奇心旺盛で意欲の人を望む.本学学・本学者であるとことが望ましい.						
A5031	受入期間		募集定員	担当教員	E-mail アドレス			
	Ⅲ 8/30(月)~	~9/3(金)	3名	教 授 加藤 茂	s-kato <at>ace. tut. ac. jp</at>			
	事前課題			岸防災,沿岸環境,気象の中 1 枚)にまとめて実習初日に打				
	服装	屋外や実験室などでの作業ができる服装・履物を準備すること.						
	携行品	特になし(ノートPC を持っている学生は持参することが望ましい)						
	実習場所	D棟814室,	環境防災実験	棟ほか				
	最終日の終了時刻	12:00 頃(午前中に報告会を実施し、終了次第解散の予定)						
	備 考 上記受入期間以外での実習を希望する場合は、相談に応じるので事前に連った。							
	オンライン実習	否						

	受入テーマ			ワークショップと建築設	 				
	受入系		建築・都市システム学系						
	受入区分		本科生:Ⅱ						
	内 容	本学近郊にある小学校をケーススタディに、建築計画の理論を用いた調査・分析を行い小学校の設計をワークショップ形式にて行う。模型作成や図面の描き方、プレゼンテーション技能の向上を目的に、デジタルデザイン、デジタルファブリケーションなど新たなデザインツールについても適宜利用していく。							
	受入条件	建築設計に興味のある学生、意欲のある学生を望む。							
	受入期間		募集定員	担当教員	E-mail アドレス				
A5041	Ⅱ 8/23(月)~	-9/3(金)	5名	准教授 水谷 晃啓	mizutani <at>ace.tut.ac.jp</at>				
	事前課題	特になし。							
	服装	模型作成作業ができる服装							
	携行品	カッター、分い)	金尺など模型を	と作るための道具(可能な人は	ノートPC を携行してくださ				
	実習場所	D2棟801室							
	最終日の終了時刻 11:00								
	備考	特になし							
	オンライン実習	否							

	受入テーマ		有限要素法	による骨組構造物の数値角	解析と構造設計			
	受入系			建築・都市システム学系	\{			
	受入区分	本科生:VII						
	内 容	1) 有限要素法による梁・柱で構成される骨組構造の構造解析手法を概説し、2) 骨組構造の解析モデルの入力データの作成法、構造解析の実施法、解析結果の分析法を学習する。3) 解析結果に基づいた部材の断面算定を実施し、構造設計の基本を学習する。また、4) 3D CAD を用いた解析データの生成、解析結果の可視化についても学習する。なお、解析対象は、トラス構造やラーメン構造とし、線形弾性解析を実施する予定である。						
	受入条件 構造解析、有限要素法(マトリクス法)に興味のある学生							
A5051	受入期間		募集定員	担当教員	E-mail アドレス			
	VII 9/13(月)~	9/17(金)	2名	教授 中澤 祥二 助教 瀧内 雄二	nakazawa <at>ace.tut.ac.jp y-takiuchi<at>ace.tut.ac.jp</at></at>			
	事前課題			マン構造)の軸力、曲げモーメ も力学に関するレポートを出題	ント、変形の計算方法を復習 質する予定。			
	服装	特になし(実験はありませ	けん)。室内用履物を準備する	5こと。			
	携行品	ノートPC(ノートPC (Windows 10 OS)を持っている学生は持参することが望ましい。					
	実習場所	D棟D-816						
	最終日の終了時刻 11:00 を予定 (遠方からの学生は要相談)							
	備考	特になし。	オンライン実習	習の場合はWindows 10 OSのP	Cが必要。			
	オンライン実習			※急事態宣言等の場合には、オン実施を保証するものではあり				

	受入テーマ	人口減少時代の都市計画・都市デザインに関する基礎知識と実践							
	受入系	建築・都市システム学系							
	受入区分	本科生:VII							
	內 容	人口減少時代に突入した日本では、都市人口の縮小(スポンジ化)に加え、都市自存の縮小が始まっており、それに向けた計画論の確立が求められています。本テーマでは、こうした計画論の実際を個別の各研究テーマのデータ整理や分析の一部に触れてもらうことで具体的に学んでいきますを想定しています。本年度は当研究室で毎年取り組んできた飯田シャレットワークショップへの参加を通して、地方小都市の都市紹小問題の実態や対策のあり方を学び、PROJECT BASED LEARNING 方式で具体的テーマに取り組みます。飯田 SW については、以下の URL を参照のこと。https://iidacwstoyohashi.wixsite.com/since2011							
	受入条件	積極的で前向きな学生を求めます							
	受入期間		E-mail アドレス						
A5061	VII 9/13(月)~	9/17(金)	3名	教 授 浅野	純一郎	asano <at>ace.tut.ac.jp</at>			
	事前課題	求める予定。	計画事情や制度に関わるレポートを出す予定。飯田市に関わる事前学習を場合によっては、日程期間の前にオンラインを通じてミーティングやワ よる場合があります。						
	服装	帽子等、暑さ対策							
	携行品	筆記用具・持っている人はノートパソコン							
	実習場所	本学研究室及	び飯田市						
	最終日の終了時刻	9月18日 (=	上)に午前9時	頃に飯田市で解	散か、同日午	後に豊橋市で解散。			
	備考	参加学生には飯田 sw 参加に関わる連絡を個別にします。例年滞在費や食費等で、豊橋への旅費とは別に目安として 25000~30000 円程度かかります(食事等込み)。ただし、新型コロナウィルスの収束状況によっては、予定しているワークショップが「止の場合もありえます。その場合、体験入学自体を中止か、内容を変えて実施ということもありえます(変更の場合はなるべく早くお知らせします)。ちなみに昨年は、ディスカッションやワーキングを主にオンラインで行い、最終発表会は1泊2日で5地で行いました。オンラインの場合は、旅費等はか							
	オンライン実習			急事態宣言等の場 実施を保証するも		ンラインでの対応可能。 ません。)			

	受入テーマ			建築環境デザイン入	門				
	受入系	建築・都市システム学系							
	受入区分	本科生:Ⅲ							
	内 容	実際の建築空間における温熱環境,空気環境,音環境,光環境の実測を行数値シミュレーションや環境デザインツールなどを用いて現状環境の改善評価を行う.							
	受入条件	建築環境分	野に興味のあ	る学生,意欲のある学生を望	建心。				
	受入期間		募集定員	担当教員	E-mail アドレス				
A5071	Ⅲ 8/30(月)~	9/3(金)	2名	准教授 島﨑 康弘 助 教 袁 継輝	shimazaki <at>ace.tut.ac.jp yuan<at>ace.tut.ac.jp</at></at>				
	事前課題	環境物理量の測定方法,生活者への影響,環境基準について事前学習しA4 レポート 用紙 2 枚程度にまとめたうえで,初日に持参する							
	服装	フィールド	測定ができる	服装・履物を準備すること	(暑さ対策を含む)				
	携行品	特になし()	ノートPC 持参	が好ましい)					
	実習場所	D2棟610室	宮,大学構内・	周辺の屋外					
	最終日の終了時刻	11:00							
	備考	特になし							
	オンライン実習	否							

	受入テーマ		個別	J要素法(DEM)	による粒状	体挙動の考察			
	受入系		建築・都市システム学系						
	受入区分	本科生:I							
	内 容	地盤工学分野ではこれまでに有限要素解析(FEA・FEM)を主体とした数値解析技術を構築してきましたが、近年のコンピュータ技術の急速な発展と普及により大変形問題へ適応できる離散体解析技術の検討が行われるようになってきました。例えばその一つの個別要素法は粒子の並進および回転の運動方程式を時刻歴に解き進める手法です。本講座では、個別要素法を題材とし、基礎知識の学習やアルゴリズムのプログラミング方法を学習します。また、実際に個別要素法を用いて地盤挙動の再現シミュレーションを行い、結果を通じて粒状体である地盤材料の挙動について詳細に考察し、理解を深めます。							
	受入条件	上記課題	に興味があり	,本学建築・都	市システム学	果程に進学を希望するもの			
	受入期間		募集定員	担当	教員	E-mail アドレス			
A5081	I 8/23(月)~8/27(金)		3名	教 授 三浦 准教授 松田 助 教 内藤	均也 達也 直人	k-miura <at>ace.tut.ac.jp matsuda.tatsuya.mp<at>tut.jp naito.naoto.xz<at>tut.jp</at></at></at>			
	事前課題	Element さい. ②地盤エ とめてく	Method) のよ 学問題に個別 ださい.	うな離散体力学 要素法が適応さ	ベースの解析に	ースと個別要素法 (Distinct こ関する違いについて調べてくだ ハて興味を持った内容についてま め,実習初日に提出してくださ			
	服装	作業がで	きる服装・履	物を準備するこ	と				
	携行品	筆記用具	.,関数電卓,	ノートパソコン	(携行するの)	が難しい場合は貸与します)			
	実習場所	D3-602							
	最終日の終了時刻 10:00 から報告会を開催して、終了次第解散								
	備考	特になし	,						
	オンライン実習			る緊急事態宣言。 での実施を保証		オンラインでの対応可能。 ありません。)			

	受入テーマ 河川水環境の調査および水質分析							
	受入系	建築・都市システム学系						
	受入区分	本科生: I						
	内 容	河川の水環境を把握するための調査項目・方法を理解し,実際に河川調査を行う。 査で採取した水サンプルを,実験室で化学分析し,各水質項目について理解する						
	受入条件	上記課題に興味があり、本学建築・都市システム学課程に進学を希望するもの						
	受入期間		募集定員	担当寿	 数員	E-mail アドレス		
A5091	I 8/23(月)∼8/27(金)		4名	教 授 井上 准教授 横田		inoue <at>ace. tut. ac. jp yokota<at>ace. tut. ac. jp</at></at>		
Noodi	事前課題	身近で、一番興味のある河川について、 1)対象河川とのかかわり方、2)対象河川の水環境の現状、3)対象河川をより良く ためにどうすればよいと考えるか、 について A4 用紙片面 1 枚にまとめ,受入れ初日に教員に提出する。						
	服装	靴・長袖・長ズボン・帽子・タオル等(屋外調査),実験しやすい服装						
	携行品	特になし(ノ	ートパソコンを持っている学生は持参するとデータ整理等便利)					
	実習場所	D2 棟 702 室, 技科大周辺河川						
	備考	特になし						
	オンライン実習	否						